(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(S(x'), S(x)) → h(g(x', S(x)), f(S(S(x')), x))
h(0, S(x)) → h(0, x)
h(0, 0) → 0
g(S(x), S(x')) → h(f(S(x), S(x')), g(x, S(S(x'))))
g(S(x), 0) → 0
f(S(x), 0) → 0
h(S(x), x2) → h(x, x2)
g(0, x2) → 0
f(0, x2) → 0
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
f(S(S(x15_1)), S(x)) →+ h(h(h(g(x15_1, S(x)), f(S(S(x15_1)), x)), g(x15_1, S(S(x)))), f(S(S(S(x15_1))), x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,1].
The pumping substitution is [x / S(x)].
The result substitution is [ ].
The rewrite sequence
f(S(S(x15_1)), S(x)) →+ h(h(h(g(x15_1, S(x)), f(S(S(x15_1)), x)), g(x15_1, S(S(x)))), f(S(S(S(x15_1))), x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / S(x)].
The result substitution is [x15_1 / S(x15_1)].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(S(x'), S(x)) → h(g(x', S(x)), f(S(S(x')), x))
h(0', S(x)) → h(0', x)
h(0', 0') → 0'
g(S(x), S(x')) → h(f(S(x), S(x')), g(x, S(S(x'))))
g(S(x), 0') → 0'
f(S(x), 0') → 0'
h(S(x), x2) → h(x, x2)
g(0', x2) → 0'
f(0', x2) → 0'
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
f(S(x'), S(x)) → h(g(x', S(x)), f(S(S(x')), x))
h(0', S(x)) → h(0', x)
h(0', 0') → 0'
g(S(x), S(x')) → h(f(S(x), S(x')), g(x, S(S(x'))))
g(S(x), 0') → 0'
f(S(x), 0') → 0'
h(S(x), x2) → h(x, x2)
g(0', x2) → 0'
f(0', x2) → 0'
Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
h :: S:0' → S:0' → S:0'
g :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
h,
gThey will be analysed ascendingly in the following order:
h < f
f = g
h < g
(8) Obligation:
Innermost TRS:
Rules:
f(
S(
x'),
S(
x)) →
h(
g(
x',
S(
x)),
f(
S(
S(
x')),
x))
h(
0',
S(
x)) →
h(
0',
x)
h(
0',
0') →
0'g(
S(
x),
S(
x')) →
h(
f(
S(
x),
S(
x')),
g(
x,
S(
S(
x'))))
g(
S(
x),
0') →
0'f(
S(
x),
0') →
0'h(
S(
x),
x2) →
h(
x,
x2)
g(
0',
x2) →
0'f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
h :: S:0' → S:0' → S:0'
g :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
h, f, g
They will be analysed ascendingly in the following order:
h < f
f = g
h < g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
h(
gen_S:0'2_0(
0),
gen_S:0'2_0(
n4_0)) →
gen_S:0'2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
h(gen_S:0'2_0(0), gen_S:0'2_0(0)) →RΩ(1)
0'
Induction Step:
h(gen_S:0'2_0(0), gen_S:0'2_0(+(n4_0, 1))) →RΩ(1)
h(0', gen_S:0'2_0(n4_0)) →IH
gen_S:0'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
f(
S(
x'),
S(
x)) →
h(
g(
x',
S(
x)),
f(
S(
S(
x')),
x))
h(
0',
S(
x)) →
h(
0',
x)
h(
0',
0') →
0'g(
S(
x),
S(
x')) →
h(
f(
S(
x),
S(
x')),
g(
x,
S(
S(
x'))))
g(
S(
x),
0') →
0'f(
S(
x),
0') →
0'h(
S(
x),
x2) →
h(
x,
x2)
g(
0',
x2) →
0'f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
h :: S:0' → S:0' → S:0'
g :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
Innermost TRS:
Rules:
f(
S(
x'),
S(
x)) →
h(
g(
x',
S(
x)),
f(
S(
S(
x')),
x))
h(
0',
S(
x)) →
h(
0',
x)
h(
0',
0') →
0'g(
S(
x),
S(
x')) →
h(
f(
S(
x),
S(
x')),
g(
x,
S(
S(
x'))))
g(
S(
x),
0') →
0'f(
S(
x),
0') →
0'h(
S(
x),
x2) →
h(
x,
x2)
g(
0',
x2) →
0'f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
h :: S:0' → S:0' → S:0'
g :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(15) Obligation:
Innermost TRS:
Rules:
f(
S(
x'),
S(
x)) →
h(
g(
x',
S(
x)),
f(
S(
S(
x')),
x))
h(
0',
S(
x)) →
h(
0',
x)
h(
0',
0') →
0'g(
S(
x),
S(
x')) →
h(
f(
S(
x),
S(
x')),
g(
x,
S(
S(
x'))))
g(
S(
x),
0') →
0'f(
S(
x),
0') →
0'h(
S(
x),
x2) →
h(
x,
x2)
g(
0',
x2) →
0'f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
h :: S:0' → S:0' → S:0'
g :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
f(
S(
x'),
S(
x)) →
h(
g(
x',
S(
x)),
f(
S(
S(
x')),
x))
h(
0',
S(
x)) →
h(
0',
x)
h(
0',
0') →
0'g(
S(
x),
S(
x')) →
h(
f(
S(
x),
S(
x')),
g(
x,
S(
S(
x'))))
g(
S(
x),
0') →
0'f(
S(
x),
0') →
0'h(
S(
x),
x2) →
h(
x,
x2)
g(
0',
x2) →
0'f(
0',
x2) →
0'Types:
f :: S:0' → S:0' → S:0'
S :: S:0' → S:0'
h :: S:0' → S:0' → S:0'
g :: S:0' → S:0' → S:0'
0' :: S:0'
hole_S:0'1_0 :: S:0'
gen_S:0'2_0 :: Nat → S:0'
Lemmas:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_S:0'2_0(0) ⇔ 0'
gen_S:0'2_0(+(x, 1)) ⇔ S(gen_S:0'2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_S:0'2_0(0), gen_S:0'2_0(n4_0)) → gen_S:0'2_0(0), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)